Subgradient Descent

David S. Rosenberg

Bloomberg ML EDU

October 18, 2017

Motivation and Review: Support Vector Machines

The Classification Problem

- Output space $\mathcal{Y} = \{-1, 1\}$ Action space $\mathcal{A} = \mathbf{R}$
- Real-valued prediction function $f: X \to R$
- The value f(x) is called the **score** for the input x.
- Intuitively, magnitude of the score represents the confidence of our prediction.
- Typical convention:

$$f(x) > 0 \implies \text{Predict } 1$$

 $f(x) < 0 \implies \text{Predict } -1$

(But we can choose other thresholds...)

The Margin

- The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.
- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how **correct** we are.
- We want to maximize the margin.

[Margin-Based] Classification Losses

SVM/Hinge loss:
$$\ell_{\text{Hinge}} = \max\{1-m,0\} = (1-m)_{+}$$

Not differentiable at m = 1. We have a "margin error" when m < 1.

[Soft Margin] Linear Support Vector Machine (No Intercept)

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x \mid w \in \mathbb{R}^d \}.$
- Loss $\ell(m) = \max(1, m)$
- ℓ_2 regularization

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n \max (0, 1 - y_i w^T x_i) + \lambda ||w||_2^2$$

SVM Optimization Problem (no intercept)

SVM objective function:

$$J(w) = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i [w^T x_i]) + \lambda ||w||^2.$$

- Not differentiable... but let's think about gradient descent anyway.
- Derivative of hinge loss $\ell(m) = \max(0, 1-m)$:

$$\ell'(m) = egin{cases} 0 & m>1 \ -1 & m<1 \ ext{undefined} & m=1 \end{cases}$$

"Gradient" of SVM Objective

• We need gradient with respect to parameter vector $w \in \mathbb{R}^d$:

$$\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) = \ell'\left(y_{i}w^{T}x_{i}\right)y_{i}x_{i} \text{ (chain rule)}$$

$$= \begin{pmatrix} 0 & y_{i}w^{T}x_{i} > 1\\ -1 & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{pmatrix} y_{i}x_{i} \text{ (expanded } m \text{ in } \ell'(m))$$

$$= \begin{cases} 0 & y_{i}w^{T}x_{i} > 1\\ -y_{i}x_{i} & y_{i}w^{T}x_{i} < 1\\ \text{undefined} & y_{i}w^{T}x_{i} = 1 \end{cases}$$

David S. Rosenberg (Bloomberg ML EDU)

"Gradient" of SVM Objective

$$\nabla_{w} \ell \left(y_{i} w^{T} x_{i} \right) = \begin{cases} 0 & y_{i} w^{T} x_{i} > 1 \\ -y_{i} x_{i} & y_{i} w^{T} x_{i} < 1 \\ \text{undefined} & y_{i} w^{T} x_{i} = 1 \end{cases}$$

So

$$\nabla_{w}J(w) = \nabla_{w}\left(\frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i}w^{T}x_{i}\right) + \lambda||w||^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla_{w}\ell\left(y_{i}w^{T}x_{i}\right) + 2\lambda w$$

$$= \begin{cases} \frac{1}{n}\sum_{i:y_{i}w^{T}x_{i}<1}(-y_{i}x_{i}) + 2\lambda w & \text{all } y_{i}w^{T}x_{i} \neq 1\\ \text{undefined} & \text{otherwise} \end{cases}$$

Gradient Descent on SVM Objective?

The gradient of the SVM objective is

$$\nabla_w J(w) = \frac{1}{n} \sum_{i: y_i w^T x_i < 1} (-y_i x_i) + 2\lambda w$$

when $y_i w^T x_i \neq 1$ for all i, and otherwise is undefined.

Suppose we tried gradient descent on J(w):

- If we start with a random w, will we ever hit $y_i w^T x_i = 1$?
- If we did, could we perturb the step size by ε to miss such a point?
- Does it even make sense to check $y_i w^T x_i = 1$ with floating point numbers?

Gradient Descent on SVM Objective?

- If we blindly apply gradient descent from a random starting point
 - seems unlikely that we'll hit a point where the gradient is undefined.
- Still, doesn't mean that gradient descent will work if objective not differentiable!
- Theory of subgradients and subgradient descent will clear up any uncertainty.

Convexity and Sublevel Sets

Convex Sets

Definition

A set C is **convex** if the line segment between any two points in C lies in C.

KPM Fig. 7.4

Convex and Concave Functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if the line segment connecting any two points on the graph of f lies above the graph. f is **concave** if -f is convex.

KPM Fig. 7.5

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

where f_0, \ldots, f_m are convex functions.

Question: Is the \leq in the constraint just a convention? Could we also have used \geq or =?

Level Sets and Sublevel Sets

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function. Then we have the following definitions:

Definition

A level set or contour line for the value c is the set of points $x \in \mathbb{R}^d$ for which f(x) = c.

Definition

A **sublevel** set for the value c is the set of points $x \in \mathbb{R}^d$ for which $f(x) \leq c$.

Theorem

If $f: \mathbb{R}^d \to \mathbb{R}$ is convex, then the sublevel sets are convex.

(Proof straight from definitions.)

Convex Function

Plot courtesy of Brett Bernstein.

Contour Plot Convex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leq 1\}$ convex?

18 / 48

Nonconvex Function

Plot courtesy of Brett Bernstein.

Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set $\{x \mid f(x) \leq 1\}$ convex?

Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.

Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Plot courtesy of Brett Bernstein.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$

where f_0, \ldots, f_m are convex functions.

- What can we say about each constraint set $\{x \mid f_i(x) \leq 0\}$? (convex)
- What can we say about the feasible set $\{x \mid f_i(x) \leq 0, i = 1, ..., m\}$? (convex)

Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form

```
minimize f(x)
subject to x \in C
```

where f is a convex function and C is a convex set. An alternative "generic" convex optimization problem.

24 / 48

Convex and Differentiable Functions

First-Order Approximation

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable.
- Predict f(y) given f(x) and $\nabla f(x)$?
- Linear (i.e. "first order") approximation:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x)$$

Boyd & Vandenberghe Fig. 3.2

First-Order Condition for Convex, Differentiable Function

- Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable.
- Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

• The linear approximation to f at x is a global underestimator of f:

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3

First-Order Condition for Convex, Differentiable Function

- Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable
- Then for any $x, y \in \mathbb{R}^d$

$$f(y) \geqslant f(x) + \nabla f(x)^T (y - x)$$

Corollary

If $\nabla f(x) = 0$ then x is a global minimizer of f.

For convex functions, local information gives global information.

Subgradients

Subgradients

Definition

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Blue is a graph of f(x).

Each red line $x \mapsto f(x_0) + g^T(x - x_0)$ is a global lower bound on f(x).

Subdifferential

Definitions

- f is subdifferentiable at x if \exists at least one subgradient at x.
- The set of all subgradients at x is called the **subdifferential**: $\partial f(x)$

Basic Facts

- f is convex and differentiable $\implies \partial f(x) = {\nabla f(x)}.$
- Any point x, there can be 0, 1, or infinitely many subgradients.
- $\partial f(x) = \emptyset \implies f$ is not convex.

Globla Optimality Condition

Definition

A vector $g \in \mathbb{R}^d$ is a subgradient of $f : \mathbb{R}^d \to \mathbb{R}$ at x if for all z,

$$f(z) \geqslant f(x) + g^{T}(z-x).$$

Corollary

If $0 \in \partial f(x)$, then x is a global minimizer of f.

Subdifferential of Absolute Value

• Consider f(x) = |x|

• Plot on right shows $\{(x,g) \mid x \in \mathbb{R}, g \in \partial f(x)\}$

33 / 48

$$f(x_1, x_2) = |x_1| + 2|x_2|$$

Plot courtesy of Brett Bernstein.

Subgradients of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Let's find the subdifferential of $f(x_1, x_2) = |x_1| + 2|x_2|$ and (3, 0).
- First coordinate of subgradient must be 1, from $|x_1|$ part (at $x_1 = 3$).
- Second coordinate of subgradient can be anything in [-2,2].
- So graph of $h(x_1, x_2) = f(3, 0) + g^T(x_1 3, x_2 0)$ is a global underestimate of $f(x_1, x_2)$, for any $g = (g_1, g_2)$, where $g_1 = 1$ and $g_2 \in [-2, 2]$.

Underestimating Hyperplane to $f(x_1, x_2) = |x_1| + 2|x_2|$

Plot courtesy of Brett Bernstein.

Subdifferential on Contour Plot

Contour plot of $f(x_1, x_2) = |x_1| + 2|x_2|$, with set of subgradients at (3, 0).

Contour Lines and Gradients

- For function $f: \mathbb{R}^d \to \mathbb{R}$,
 - graph of function lives in \mathbb{R}^{d+1} ,
 - gradient and subgradient of f live in \mathbb{R}^d , and
 - contours, level sets, and sublevel sets are in R^d.
- $f: \mathbb{R}^d \to \mathbb{R}$ continuously differentiable, $\nabla f(x_0) \neq 0$, then $\nabla f(x_0)$ normal to level set

$$S = \left\{ x \in \mathbf{R}^d \mid f(x) = f(x_0) \right\}.$$

Proof sketch in notes.

Gradient orthogonal to sublevel sets

Plot courtesy of Brett Bernstein.

Contour Lines and Subgradients

Let $f: \mathbb{R}^d \to \mathbb{R}$ have a subgradient g at x_0 .

- Hyperplane H orthogonal to g at x_0 must support the level set $S = \{x \in \mathbb{R}^d \mid f(x) = f(x_0)\}.$
 - i.e H contains x_0 and all of S lies one one side of H.

Proof:

- For any y, we have $f(y) \ge f(x_0) + g^T(y x_0)$. (def of subgradient)
- If y is strictly on side of H that g points in,
 - then $g^T(y-x_0) > 0$.
 - So $f(y) > f(x_0)$.
 - So y is not in the level set S.
- \therefore All elements of S must be on H or on the -g side of H.

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

Plot courtesy of Brett Bernstein.

Subgradient of $f(x_1, x_2) = |x_1| + 2|x_2|$

- Points on g side of H have larger f-values than $f(x_0)$. (from proof)
- But points on -g side may **not** have smaller f-values.
- So -g may **not** be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.

Subgradient Descent

Subgradient Descent

- Suppose f is convex, and we start optimizing at x_0 .
- Repeat
 - Step in a negative subgradient direction:

$$x = x_0 - tg$$
,

where t > 0 is the step size and $g \in \partial f(x_0)$.

-g not a descent direction – can this work?

Subgradient Gets Us Closer To Minimizer

Theorem

Suppose f is convex.

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$.
- Let z be any point for which $f(z) < f(x_0)$.
- Then for small enough t > 0,

$$||x-z||_2 < ||x_0-z||_2$$
.

- Apply this with $z = x^* \in \operatorname{arg\,min}_x f(x)$.
- ⇒ Negative subgradient step gets us closer to minimizer.

Subgradient Gets Us Closer To Minimizer (Proof)

- Let $x = x_0 tg$, for $g \in \partial f(x_0)$ and t > 0.
- Let z be any point for which $f(z) < f(x_0)$.
- Then

$$||x-z||_{2}^{2} = ||x_{0}-tg-z||_{2}^{2}$$

$$= ||x_{0}-z||_{2}^{2} - 2tg^{T}(x_{0}-z) + t^{2}||g||_{2}^{2}$$

$$\leq ||x_{0}-z||_{2}^{2} - 2t[f(x_{0}) - f(z)] + t^{2}||g||_{2}^{2}$$

- Consider $-2t[f(x_0)-f(z)]+t^2\|g\|_2^2$.
 - It's a convex quadratic (facing upwards).
 - Has zeros at t = 0 and $t = 2(f(x_0) f(z)) / ||g||_2^2 > 0$.
 - Therefore, it's negative for any

$$t \in \left(0, \frac{2(f(x_0) - f(z))}{\|g\|_2^2}\right).$$

Based on Boyd EE364b: Subgradients Slides

Convergence Theorem for Fixed Step Size

Assume $f: \mathbb{R}^d \to \mathbb{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

$$|f(x)-f(y)| \leqslant G||x-y||$$
 for all x, y

Theorem

For fixed step size t, subgradient method satisfies:

$$\lim_{k \to \infty} f(x_{best}^{(k)}) \leqslant f(x^*) + G^2 t/2$$

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf

Convergence Theorems for Decreasing Step Sizes

Assume $f: \mathbb{R}^d \to \mathbb{R}$ is convex and

• f is Lipschitz continuous with constant G > 0:

$$|f(x)-f(y)| \leqslant G||x-y||$$
 for all x, y

Theorem

For step size respecting Robbins-Monro conditions,

$$\lim_{k \to \infty} f(x_{best}^{(k)}) = f(x^*)$$

Based on https://www.cs.cmu.edu/~ggordon/10725-F12/slides/06-sg-method.pdf