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Motivation and Review: Support Vector Machines J
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The Classification Problem

Output space Y ={-1,1} Action space A =R
Real-valued prediction function f: X — R

The value f(x) is called the score for the input x.

Intuitively, magnitude of the score represents the confidence of our prediction.

Typical convention:

f(x) >0 = Predict 1
f(x) <0 = Predict —1

(But we can choose other thresholds...)
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The Margin

@ The margin (or functional margin) for predicted score y and true class y € {—1,1} is yy.
@ The margin often looks like yf(x), where f(x) is our score function.
@ The margin is a measure of how correct we are.

e We want to maximize the margin.
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[Margin-Based] Classification Losses

SVM/Hinge loss: {Hinge = max{1—m,0} = (1—m)

Loss
== Zero_One
3-

== Hinge

0
Margin m=yf(x)

Not differentiable at m=1. We have a “margin error” when m < 1.
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[Soft Margin] Linear Support Vector Machine (No Intercept)

o Hypothesis space F = {f(x) =w'x|w € R/}.
@ Loss {(m) =max(1,m)
o {5 regularization
min max (0,1—inTX;)+)\HWH§
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SVM Optimization Problem (no intercept)

@ SVM objective function:

J(w) = %Zmax (O, 1—y; [WTX,-]) +Allwl.
i=1

@ Not differentiable... but let's think about gradient descent anyway.
@ Derivative of hinge loss {(m) = max(0,1—m):

0 m>1
U'(m=<¢—-1 m<1

undefined m=1
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“Gradient” of SVM Objective

@ We need gradient with respect to parameter vector w € RY:

Vil (yiw"x) = U (yiw”x)yix; (chain rule)
0 yiwTx;i>1
= -1 yiwTx; <1 | yix; (expanded m in ¢'(m))
undefined yiw'x =1
0 yiwTx; >1
= —YiX; yiwTx; <1

undefined yiw’x; =1
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“Gradient” of SVM Objective

0 y;WTx;>1
Val (yiw'x) = < —yixi yiwTx; < 1
undefined yiw'x; =1
So
Vwdw) = V lie(y-wa-)+7\||w||2
w w n 1 1

i=1

1 n
= = ZVWE (y;WTx,-) +2Aw
i
%Zi:y,-wa,-<1 (—yixi)+2Aw  all yiwTx; #1
undefined otherwise
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw)=— 3 (cyix) 4 2w

ityiwTx;<1

when y;w T x; # 1 for all i, and otherwise is undefined.

Suppose we tried gradient descent on J(w):
o If we start with a random w, will we ever hit yjw 7 x; =17
o If we did, could we perturb the step size by € to miss such a point?

@ Does it even make sense to check yjw " x; = 1 with floating point numbers?
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Gradient Descent on SVM Objective?

o If we blindly apply gradient descent from a random starting point
e seems unlikely that we'll hit a point where the gradient is undefined.

@ Still, doesn’t mean that gradient descent will work if objective not differentiable!

@ Theory of subgradients and subgradient descent will clear up any uncertainty.
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Convexity and Sublevel Sets J
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Convex Sets

Definition
A set C is convex if the line segment between any two points in C lies in C. J

KPM Fig. 7.4
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Convex and Concave Functions

Definition
A function f: RY — R is convex if the line segment connecting any two points on the graph of
f lies above the graph. f is concave if —f is convex.

P feeanmmmnan
v1)

KPM Fig. 7.5
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where fy, ..., f,, are convex functions.

Question: Is the < in the constraint just a convention? Could we also have used > or =7
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Level Sets and Sublevel Sets

Let f:RY — R be a function. Then we have the following definitions:
Definition

A level set or contour line for the value c is the set of points x € RY for which f(x) = c.

Definition

A sublevel set for the value c is the set of points x € R? for which f(x) < c.

Theorem

If f:RY — R is convex, then the sublevel sets are convex.

(Proof straight from definitions.)
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Convex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Convex Function: Sublevel Set

.

Is the sublevel set {x| f(x) < 1} convex?

Plot courtesy of Brett Bernstein.
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Nonconvex Function

Plot courtesy of Brett Bernstein.
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Contour Plot Nonconvex Function: Sublevel Set

Is the sublevel set {x| f(x) < 1} convex?

Plot courtesy of Brett Bernstein.
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Fact: Intersection of Convex Sets is Convex

Plot courtesy of Brett Bernstein.
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Level and Superlevel Sets

Level sets and superlevel sets of convex functions are not generally convex.

Plot courtesy of Brett Bernstein.
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Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize fo(x)
subject to fi(x)<0, i=1,....m

where fy, ..., fy, are convex functions.

@ What can we say about each constraint set {x | f;(x) < 0}7 (convex)

@ What can we say about the feasible set {x | f;(x) <0,/=1,...,m}? (convex)
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Convex Optimization Problem: Implicit Form

Convex Optimization Problem: Implicit Form
minimize f(x)
subjectto  x € C

where f is a convex function and C is a convex set.
An alternative “generic’ convex optimization problem.
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Convex and Differentiable Functions J
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First-Order Approximation
@ Suppose f : R? — R is differentiable.

@ Predict f(y) given f(x) and Vf(x)?
o Linear (i.e. “first order”) approximation:

Fly) = F(x)+ V()T (y—x)

flz)+ Vi) (y — =)

(z, f(z))

Boyd & Vandenberghe Fig. 3.2
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable.

e Then for any x,y € R?
fly) = f(x)+VF(x)T (y—x)

@ The linear approximation to f at x is a global underestimator of f:

(y)
fl@) + V(@) (y—z)

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable

@ Then for any x,y € R?
fly) = F(x)+VF(x)T(y—x)

Corollary

If Vf(x) =0 then x is a global minimizer of f.

For convex functions, local information gives global information.
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Subgradients J
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Subgradients

Definition

A vector g € R? is a subgradient of f: R? — R at x if for all z,

flz) > f(x)+g" (z—x).

Blue is a graph of f(x).

Each red line x — f(xp) +g" (x —xo) is a global lower bound on f(x).
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Subdifferential

Definitions
e f is subdifferentiable at x if 3 at least one subgradient at x.

@ The set of all subgradients at x is called the subdifferential: 0f(x)

Basic Facts

@ f is convex and differentiable =— 0f(x) ={Vf(x)}.
@ Any point x, there can be 0, 1, or infinitely many subgradients.

@ 0f(x) =0 = f is not convex.
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Globla Optimality Condition

Definition

A vector g € RY is a subgradient of f:RY — R at x if for all z,

flz) = f(x)+g"(z—x).

Corollary

If0 € 0f (x), then x is a global minimizer of f.
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Subdifferential of Absolute Value

o Consider f(x) = x|

f(z) = |=|

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides

9 (x)
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= |x1| +2|xo]

f(x1,x2)

Plot courtesy of Brett Bernstein.

34/48

October 18, 2017



Subgradients of f(xq,x2) = |x1|+2|xo]

o Let's find the subdifferential of f(x1,x) = |x1|+2|x>| and (3,0).

First coordinate of subgradient must be 1, from [x;| part (at x; = 3).
@ Second coordinate of subgradient can be anything in [—2,2].

So graph of h(x1,x2) =f(3,0)+g 7 (x1 —3,xo—0) is a global underestimate of f(xi,x2),
for any g = (g1,42), where g1 =1 and g» € [-2,2].
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Underestimating Hyperplane to f(xq,x2) = |x1|+2|xo|

Plot courtesy of Brett Bernstein.
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Subdifferential on Contour Plot

af(3,0)={, )7 |be [-2,2]}

\
)

7
\

Contour plot of f(x1,x2) = |x1]+ 2|xs|, with set of subgradients at (3,0). .
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Contour Lines and Gradients

@ For function f:RY — R,
o graph of function lives in RY*1,

o gradient and subgradient of f live in RY, and
o contours, level sets, and sublevel sets are in RY.
o f:R? — R continuously differentiable, V(xq) # 0, then V£ (xo) normal to level set
S={xeRY|f(x)=f(x)}.

@ Proof sketch in notes.
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Gradient orthogonal to sublevel sets

Vi(z)

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

Let f:RY = R have a subgradient g at xp.
@ Hyperplane H orthogonal to g at xp must support the level set
S= {x eRY|f(x)= f(xo)}.
e i.e H contains xg and all of S lies one one side of H.
Proof:
@ For any y, we have f(y) > f(x0) +& ' (y —xo). (def of subgradient)
o If y is strictly on side of H that g points in,

e then g7 (y —xp) > 0.
e So f(y) > f(xg).
e So y is not in the level set S.

o .. All elements of S must be on H or on the —g side of H.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

g"(y—v) <0 w2

Z1

f) 2 f0) +4"(y—v) > fv)

Plot courtesy of Brett Bernstein.
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Subgradient of f(x1,xp) = |x1|+ 2|xo]

-0 <0

J0) 2 @)+ =) > f(v)

@ Points on g side of H have larger f-values than f(xp). (from proof)
@ But points on —g side may not have smaller f-values.

@ So —g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent J
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Subgradient Descent

@ Suppose f is convex, and we start optimizing at xg.
@ Repeat
e Step in a negative subgradient direction:

X =Xxo—tg,
where t > 0 is the step size and g € 97 (xg).

—g not a descent direction — can this work?
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Subgradient Gets Us Closer To Minimizer

Theorem
Suppose f is convex.
o Let x=x9—tg, for g € 0f (xp).
@ Let z be any point for which f(z) < f(xp).

@ Then for small enough t >0,
[Ix—zl[2 < ||Ix0 — |2

e Apply this with z=x* € argmin, f(x).

—> Negative subgradient step gets us closer to minimizer.
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Subgradient Gets Us Closer To Minimizer (Proof)

@ Let x=x9—tg, for g € 0f(xp) and t > 0.
@ Let z be any point for which f(z) < f(xp).
@ Then

Ix—zl3 = |x—tg—2z|3
= |xo—zl3—2tg" (xo—2)+¢(lgl3
< lxo—z||3—2t[f(x0) — f(2)] + t2| g3
Consider —2t[f(xg) — f(2)] + t2||g]|3.

e It's a convex quadratic (facing upwards).
o Has zeros at t =0 and t =2(f(x) —f(2)) /||g||3 > 0.

o Therefore, it's negative for any
ce (o.20bol_tial)
I&ll3

Based on Boyd EE364b: Subgradients Slides
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Convergence Theorem for Fixed Step Size

Assume f: R — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(y)| < Gllx—y]| for all x,y

Theorem

For fixed step size t, subgradient method satisfies:

lim f(xbest) f(x*)+ G?%t/2

k—o00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf
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Convergence Theorems for Decreasing Step Sizes

Assume f: R — R is convex and

@ f is Lipschitz continuous with constant G > 0:
()~ F(y)| < Gllx—y]| for all x,y

Theorem

For step size respecting Robbins-Monro conditions,

lim F(x5)) = F(x*)

k—00

Based on https://www.cs.cmu.edu/ ggordon/10725-F12/slides/06- sg-method.pdf
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